
Galois Scalable Abstractions
for Scalable Systems

OPERATOR FORMULATION

ONE MODEL, MANY TARGETS

MULTILEVEL PROGRAMMING

THINK BEYOND A VERTEX

NATIVE PERFORMANCE

Active element
— Site where

computation is
needed

Operator
— Computation at

active element

Activity
— application of

operator to active
element

Neighborhood
— Set of nodes/edges read/written by activity
— Distinct usually from neighbors in graph

Ordering
— Scheduling constraints on execution order of activities
— Unordered algorithms: no semantic constraints but

performance may depend on schedule
— Ordered algorithms: problemdependent order

Amorphous dataparallelism
— Multiple active nodes can be processed in parallel subject to

neighborhood and ordering constraints

Parallel program = Operator + Schedule + Parallel data structure

Andrew Lenharth (lenharth@ices.utexas.edu)
Keshav Pingali (pingali@cs.utexas.edu)
Marc Snir (snir@cs.uiuc.edu)

Joe Programmer:
Operator and Schedule
Specification

Stephanie Programmer:
Parallel Data Structures

ObiWan Programmer:
Synchronization, NUMA,
Scalable Runtime

Ubiquitous parallelism:
— small number of expert programmers (Stephanies) must

support large number of application programmers (Joes)
— cf. SQL

Stephanie
— Library of concurrent data structures
— Provides serializable, atomic execution of activities

Joe
— Application code in stylized, sequential C++
— Uses Galois set iterator for highlighting opportunities for

exploiting ADP and Galois data structures for concurency
control

Intel HPC Study: Galois
implementations are
comperable to hand
written and optimized
code.
"Navigating the maze of graph
analytics frameworks” Nadathur
et al SIGMOD 2014

SCALING
Numaaware
runtime and data
structures for
high multicore
scaling. Real
performance —
singlethread
performance is
on par with
optimized serial code.

The best algorithm may not be expressible
as a vertex program
— Connected components with unionfind

The best algorithm may require
applicationspecific scheduling
— Priority scheduling for SSSP

Autonomous scheduling required for high
diameter graphs
— Coordinated scheduling uses many rounds

and has too much overhead

GPUs
— Optimized implementation strategies for coalesing,

synchronization, highthread counts
— Scheduling and load balancing for highlyparallelism
— Multigpu support

FPGAs
— Optimized scheduling and conflict detection
— Targets network of FPGAs architectures

Distributed Memory
— Transparent support for distributed memory for arbitrarily

complex irregular algorithms

Xeon PHI
— Numa and memory optimizations lead to outperforming

simple pthread/openMP/openCL codes

Heterogeneous and emerging
— Mixed GPU/CPU
— In progress: Cluster of multicore/CPU, coherent CPU/FPGA




