
Galois Scalable Abstractions
for Scalable Systems

OPERATOR FORMULATION

ONE MODEL, MANY TARGETS

MULTI­LEVEL PROGRAMMING

THINK BEYOND A VERTEX

NATIVE PERFORMANCE

Active element
— Site where

computation is
needed

Operator
— Computation at

active element

Activity
— application of

operator to active
element

Neighborhood
— Set of nodes/edges read/written by activity
— Distinct usually from neighbors in graph

Ordering
— Scheduling constraints on execution order of activities
— Unordered algorithms: no semantic constraints but

performance may depend on schedule
— Ordered algorithms: problem­dependent order

Amorphous data­parallelism
— Multiple active nodes can be processed in parallel subject to

neighborhood and ordering constraints

Parallel program = Operator + Schedule + Parallel data structure

Andrew Lenharth (lenharth@ices.utexas.edu)
Keshav Pingali (pingali@cs.utexas.edu)
Marc Snir (snir@cs.uiuc.edu)

Joe Programmer:
Operator and Schedule
Specification

Stephanie Programmer:
Parallel Data Structures

Obi­Wan Programmer:
Synchronization, NUMA,
Scalable Runtime

Ubiquitous parallelism:
— small number of expert programmers (Stephanies) must

support large number of application programmers (Joes)
— cf. SQL

Stephanie
— Library of concurrent data structures
— Provides serializable, atomic execution of activities

Joe
— Application code in stylized, sequential C++
— Uses Galois set iterator for highlighting opportunities for

exploiting ADP and Galois data structures for concurency
control

Intel HPC Study: Galois
implementations are
comperable to hand­
written and optimized
code.
"Navigating the maze of graph
analytics frameworks” Nadathur
et al SIGMOD 2014

SCALING
Numa­aware
runtime and data
structures for
high multi­core
scaling. Real
performance —
single­thread
performance is
on par with
optimized serial code.

The best algorithm may not be expressible
as a vertex program
— Connected components with union­find

The best algorithm may require
application­specific scheduling
— Priority scheduling for SSSP

Autonomous scheduling required for high­
diameter graphs
— Coordinated scheduling uses many rounds

and has too much overhead

GPUs
— Optimized implementation strategies for coalesing,

synchronization, high­thread counts
— Scheduling and load balancing for highly­parallelism
— Multi­gpu support

FPGAs
— Optimized scheduling and conflict detection
— Targets network of FPGAs architectures

Distributed Memory
— Transparent support for distributed memory for arbitrarily

complex irregular algorithms

Xeon PHI
— Numa and memory optimizations lead to out­performing

simple pthread/openMP/openCL codes

Heterogeneous and emerging
— Mixed GPU/CPU
— In progress: Cluster of multicore/CPU, coherent CPU/FPGA




